Dynamical scaling and kinetic roughening of single valued fronts propagating in fractal media

نویسندگان

  • J. Asikainen
  • S. Majaniemi
  • M. Dubé
  • J. Heinonen
چکیده

We consider the dynamical scaling and kinetic roughening of single-valued interfaces propagating in 2D fractal media. Assuming that the nearest-neighbor height difference distribution function of the fronts obeys Lévy statistics with a well-defined algebraic decay exponent, we consider the generalized scaling forms and derive analytic expressions for the local scaling exponents. We show that the kinetic roughening of the interfaces displays intrinsic anomalous scaling and multiscaling in the relevant correlation functions. We test the predictions of the scaling theory with a variety of well-known models which produce fractal growth structures. Results are in excellent agreement with theory. For some models, we find interesting crossover behavior related to large-scale structural instabilities of the growing aggregates. PACS. 68.35.Ct Interface structure and roughness – 47.53.+n Fractals – 61.43.Hv Fractals; macroscopic aggregates (including diffusion-limited aggregates)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface dynamics and kinetic roughening in fractals.

We consider the dynamics and kinetic roughening of single-valued interfaces in two-dimensional fractal media. Assuming that the local height difference distribution function of the fronts obeys Levý statistics with a well-defined power-law decay exponent, we derive analytic expressions for the local scaling exponents. We also show that the kinetic roughening of the interfaces displays anomalous...

متن کامل

Statistical Properties of Random Fractals: Geometry, Growth and Interface Dynamics

This thesis comprises analytic and numerical studies of static, geometrical properties of fractals and dynamical processes in them. First, we have numerically estimated the subset fractal dimensions DS describing the scaling of some subsets S of the fractal cluster with the linear cluster size R in the q-state Potts models. These subsets include the total mass of the cluster, the hull, the exte...

متن کامل

Scaling, Propagation, and Kinetic Roughening of Flame Fronts in Random Media

We introduce a model of two coupled reaction–diffusion equations to describe the dynamics and propagation of flame fronts in random media. The model incorporates heat diffusion, its dissipation, and its production through coupling to the background reactant density. We first show analytically and numerically that there is a finite critical value of the background density, below which the front ...

متن کامل

Scaling and noise in slow combustion of paper

We present results of high resolution experiments on kinetic roughening of slow combustion fronts in paper, focusing on short length and time scales. Using three different grades of paper, we find that the combustion fronts show apparent spatial and temporal multiscaling at short scales. The scaling exponents decrease as a function of the order of the corresponding correlation functions. The no...

متن کامل

Kinetic roughening and pinning of two coupled interfaces in disordered media.

We studied the kinetic roughening dynamic of two coupled interfaces formed in paper wetting experiments at low evaporation rate. We observed three different regimes of impregnation in which kinetic roughening dynamics of coupled precursor and main fronts belong to different universality classes; nevertheless both interfaces are pinned in the same configuration. Reported experimental observation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002